Tathagata Karmakar

Andrew N. Jordan ♂ group

+1 585-967-8496 tkarmaka@ur.rochester.edu

https://tathagata-karmakar.github.io/

Expertise -

Quantum optimal control, open quantum systems, open quantum systems, . **Programming languages**: Python (PyTorch, JAX), Mathematica, QuTiP.

Education -

• Ph.D., Department of Physics and Astronomy, University of Rochester

2018-2024

• BS Physics CPI: 9.9/10, Indian Institute of Technology, Kanpur

2014-2018

Internships & academic affiliations -

• Postdoctoral scholar, Department of Chemistry, UC Berkeley.

Oct. 2024-Ongoing

• Research Intern, PHI Lab, NTT Research, Inc., Sunnyvale, CA.

Jul. -Sep. 2023

• Affiliated student researcher, Chapman University.

Aug. 2021-present

• Summer research assistant, CCA, Simons Foundation, NYC.

May - Jul., 2017

Selected Publications

- [1] T. Karmakar and A. N. Jordan, "CDJ-Pontryagin Optimal Control for General Continuously Monitored Quantum Systems", arXiv: 2504.08173 (2025).
- [2] Sethuraj K. R., **T. Karmakar**, A. N. Jordan and A. N. Vamivakas, and "Experimental realization of supergrowing fields", Phys. Rev. Research **6**, L032043 (2024).
- [3] **T. Karmakar**, É. Jussiau, S. K. Manikandan, and A. N. Jordan, "Cyclic superconducting quantum refrigerators using guided fluxon propagation", Phys. Rev. Research, **6**, 013085 (2024).
- [4] T. Karmakar, A. Chakraborty, A. N. Vamivakas and A. N. Jordan, "Supergrowth and sub-wavelength object imaging", Opt. Exp. 31, 37174-37185 (2023).
- [5] **T. Karmakar** and A. N. Jordan, "Beyond Superoscillation: General Theory of Approximation with Bandlimited Functions", J. Phys. A: Math. Theor. (2023).
- [6] T. Karmakar, P. Lewalle, and A. N. Jordan, "Stochastic path-integral analysis of the continuously monitored quantum harmonic oscillator", PRX Quantum 3, 010327 (2022).

Research Experience

• Noise canceling feedback:

2024 - Ongoing

- Designed feedback protocols to generate deterministic dynamics in continuously monitored systems.
- Applied noise-canceling feedback for 5-to-1 magic state distillation based on [[5, 1, 3]] code.
- Showed that noise-canceling feedback leads to a 300-400% boost in successful distillation probabilities.

• Quantum optimal control [1]:

2023 - 2025

- Generalized Pontryagin maximum principle to find the optimal control for general continuously monitored systems.
- Solved for optimal control for oscillator state preparation problems, such as binomial codeword preparation, parametric cooling, and cat state to cat state transformation.
- Showed that optimal control protocols lead to a 40-190% increase in the number of trajectories reaching the target state.

• Stochastic path integral [6]:

2020 - 2021

- Formulated and optimized a stochastic action principle based description of a harmonic oscillator and confirmed analytical findings with 100,000 simulated trajectories.

Other Experiences -

- Mentor, PASSAGE, Dept. of Physics and Astronomy, University of Rochester (2020-2021).
- Teaching assistant, Dept. of Physics and Astronomy, University of Rochester (2018-2019).